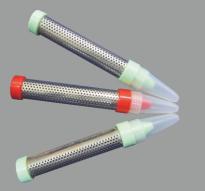


EXTENSION BULLETIN


ICAR NATIONAL INSTITUTE OF BIOTIC STRESS MANAGEMENT Rendering Solution to Biotic Stress

Eco-friendly Pest Management Technologies 2018

P. Mooventhan R. K. Murali Baskaran K. C. Sharma P. N. Sivalingam J. Sridhar S. Mohan Pankaj Kaushal

PUBLISHED BY

Dr. Jagdish Kumar Director ICAR-National Institute of Biotic Stress Management Baronda, Raipur Chhattisgarh - 493 225 Telefax: 0771-2225333 Email: director.nibsm.cg@gov.in Website: www.nibsm.res.in

TOP COVER PHOTO : *Trichogramma* EGG PARASITOID LEFT COVER PHOTO : SEX PHEROMONE TRAP CURRENT PAGE PHOTO : YELLOW STICKY TRAP & INSECT PROBE TRAP

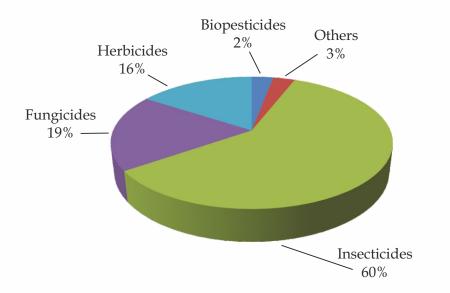
Eco-friendly Pest Management Technologies

Contents

Acknowledgements	2
Key points	3
Introduction	4
Components of eco-friendly pest management	5
Insect predators	6
Insect parasitoids	8
Biocontrol agents of sugarcane woolly aphids	9
Mass production of important insect predators	10
Mass production of important insect parasitoids	12
Mass production of insect pathogens	15
Entomopathogenic nematode	21
Antagonistic fungi	21
Biocontrol laboratories	22
Eco-friendly traps in pest management	24
Panchagavya	26
Gadgets in storage pests management	28
Conclusion	30

Acknowledgements

The Extension Bulletin on 'Eco-friendly Pest Management Technologies' was prepared by the ICAR-NIBSM, Raipur with financial assistance of the MANAGE, Hyderabad. We acknowledge the help rendered from Dr. Jagdish Kumar, Director (Acting) and Dr. Kareem, Centre Head (EAAS), MANAGE, Hyderabad.

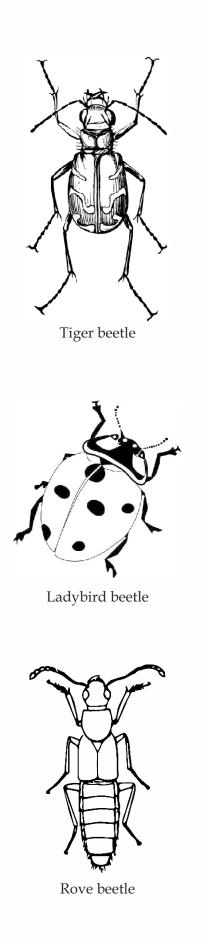


Key Points

- Pest and Pathogen are major biotic stresses to cause economic damage and yield loss to field and horticultural crops
- Eco-friendly pest management technologies are best alternative to chemical control which are environmentally complementary/ focused with special attention to food security and sustainability
- Various traps like sex pheromone, yellow and blue sticky traps, fruit fly and fish meal traps; bio-control agents like green lacewing, brown lacewing, *Dipha aphidivora*, Australian ladybird beetle, black beetle, *Trichogramma* spp., Ichneumonfly, Braconid, *Brachymeria* and *Goniozus* wasps; insect pathogens such as *Bacillus thuringiensis*, nucleopolyhedron virus, Entomopathogenic fungi, Entomopathogenic nematode; antagonistic fungi like *Trichoderma* spp., *Pseudomonas etc.* are considered as eco-friendly pest management technologies in India
- Gadget technology for storage pest management is the recent advances of eco-friendly pest management
- The use of eco-friendly pest management methods is estimated as 5% of total pesticide usage in India (Fig. 1).

Fig 1. Share of different classes of pesticides used in India

Goniozus adult on *Corcyra cephalonica*


"A grain saved is a grain produced - A seed saved is thousands produced"

"Eco-friendly pest management is an environmentally complementary/focused to prevent the occurrence of pest on crops"

"Biological control is the using of living organism to manage pest"

"Stamp for Australian ladybird beetle to respect its genuine service in managing mealybugs"

Introduction

The rapid increase of human population during the last century has necessitated intensification of agriculture, which resulted in aggravation of pest problems and increasing pest-associated losses. During the last five decades, intensive agriculture utilizing green revolution technologies has caused tremendous damage to the natural resources that sustain it. Crop losses are usually defined as the reduction in either quantity or quality of yield and these may be caused by abiotic and biotic factors, leading to the reduction in crop productivity and lower actual yield than the attainable yield of crops. In India, the crop losses by insect pests was estimated as 23.3% during 1990s; 17.5% in 2010 and 15.7% in 2015. The crop-wise losses by insect pests is computed as 30% in cotton, 25% in rice, 20% in oilseeds, 15% in pulses, 5% in wheat, 18% in maize, 8% in sorghum and millets, 20% in sugarcane and 30 to 40% in vegetables. The post-harvest losses is computed to be around 9.3% of which losses during storage alone are estimated at 6.6%, out of which insect alone causes around 2.5% loss. In recent years, with changes in the cropping systems and climate, and introduction of highly input intensive high yielding varieties/hybrids, a shift in pest status has been observed.

Most of the plant protection recommendations in crops so far indicated the calendar based application of chemical insecticides. Around 272 pesticide molecules are registered and readily available in the market of India. Out of total insecticides used for pest management in India, 50% are diverted to cotton pest management. The use of insecticides and pesticides have increased manifolds during the past 3-4 decades with the introduction of intensive cropping. The annual insecticide application has increased from 7,000 t in 1997 to more than 16,000 t in the year 2000. The average consumption of pesticides in India is about 570 g/ha, as compared to developed countries like Japan, Thailand and Germany where the consumption rate is 11 kg, 17 kg and 3 kg/ha, respectively. Though the average quantum of pesticides usage in India is low, the damage caused due to their indiscriminate usage and poor quality maintenance is alarming.

Due to over dependence and indiscriminate use of insecticides, many ill-effects including residue in plant parts, resistance to insecticides, secondary pest out-break, pollution to natural resources, health complications for human and wildlife *etc.*, warrant to switch over to Integrated Pest Management (IPM). IPM aims at suppressing the pest species by combining more than one method of pest control in a harmonious way with least emphasis on the use of insecticides. In simple terms IPM is the right combination of cultural, biological and chemical measures which provides the most effective, environmentally sound and socially acceptable methods of managing pests, diseases and weeds. The major components of IPM are prevention, observation and intervention. The IPM seems to be the only answer to encounter some of the major pests of crops, which have become unmanageable in recent years. The success of IPM largely depends upon using eco-friendly pest management tools and conservation of naturally occurring biocontrol agents. Eco-friendly pest management is an environmentally complementary/ focused method with specific attention to its role in food security and sustainability. Some of such methods include traps, bio-control agents, food baits, gadgets, bio-pesticides *etc.*, which do not require any special protocols to be followed by the farmers in pest management under field condition (Fig. 2).

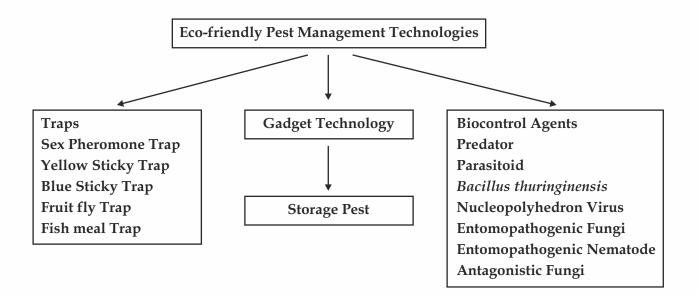


Fig 2. Components of eco-friendly pest management

Insect Predators

A predator is relatively large compared to its host (prey) which it seizes and either devoures or sucks dry of its body fluids rather quickly. One predator consumes a number of hosts (single coccinellid adult feeds hundreds of aphids) in completing its development (Table 1).

Common Name	Scientific Name	Target pests
Ladybird beetle	Cheilomenes sexmaculata, Chilocorus	Aphids, mealybugs, scales,
	nigrita, Coccinella transversalis,	psyllids, whiteflies, eggs and early
	Coccinella septempunctata, Curinus	instar of Lepidoptera, Coleoptera,
	coeruleus, Cryptolaemus	Thysanaptera, Diptera, mites
	montrouzieri, Scymnus coccivora	
Mirid bug	Cyrtorhinus lividipennis	Eggs of rice leaf and planthoppers
Anthorocid bug	Xylocoris flavipes	Stored product pests
	Cardiastethus exiguous	Eggs and early instar of coconut
		black headed caterpillar
	Blaptostethus pallescens	Early instar of <i>Helicoverpa</i>
		armigera
Ant lion	Chrysoperla carnea	Eggs and early instar of
		Helicoverpa armigera
Brown lacewing	Micromus igoratus	Sugarcane woolly aphid
Syrphid fly	Episyrphus, Betasyrphus, Ischiodon	Aphids

Table 1. List of important insect predators

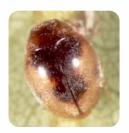
Rodolia cardinalis

Coccinella transversalis

Cheilomenes sexmaculata

Coccinella septempunctata Harmonia octomaculata

Chilocorus nigrita


Pharoscymnus horni

Curinus coeruleus

Brumoides suturalis

Scymnus coccivora

Illeis cincta

Mirid bug

Cryptolaemus montrouzieri

Anthocorid bug

Syrphid fly

Green lacewing

Ground beetle

Reduviid bug

Brown lacewing

Tiger beetle

Pentatomid bug

Rove beetle

Dragonfly

Yield loss in crops

Weeds: 33% Insects: 26% Diseases: 20% Rodents: 6% Others: 6-8%

Crop losses by insect pests

1990: 23.3% 2010: 17.5% 2015: 15.7%

Crop-wise losses by insect pests

Cotton: 30% Rice: 25% Oil seeds: 20% Pulses: 15% Wheat: 05% Maize: 18% Sorghum & Millet: 08% Sugarcane: 20% Fruits & Vegetables: 30-40%

Post harvest losses

Total post-harvest losses: 9.3% Non-scientific storage: 6.6% Storage insect: 2.5% Rodent: 6.0%

Average consumption of pesticides

India: 570 g/ha Japan: 11 kg/ha Thailand : 17 kg/ha Germany: 03 kg/ha

7

Insect Parasitoids

The parasitoid is almost parasitic in its immature stages and develops within or upon a single host which is slowly destroyed as the parasitic larva completes its development (Table 2).

Common Name	Scientific Name	Target pests
Ichneumonid wasp	Campoletis chlorideae, Eriborus argenteopilosus	Helicoverpa armigera
	Xanthopimpla spp.	Stem borers of cereal crops
	Eriborus trochanteratus	Coconut black headed caterpillar
Egg larval parasitoid	Chelonus blackburni	Cotton spotted bollworms
Larval parasitoid	Bracon brevicornis	Opisina arenosella
	Distatrix papilionis	Papilio demoleus, Diaeretiella rapae
	<i>Stenobracon</i> sp.	Tephritidae
Egg parasitoid	Trichogramma spp.	Eggs of lepidopteran pests
Eulophid parasitoid	Telenomus remus	Eggs of Spodoptera litura
	Pediobius foveolatus	<i>Epilachna</i> larvae
	Trichospilus pupivora,	Pupa of Opisina arenosella
	Tetrastichus israeli	
Encyrtid parasitoid	<i>Copidosoma</i> sp	<i>Plusia</i> sp.
	Acerophagus papayae	Papaya mealybug
Rice gall midge parasitoid	Platygaster oryzae, Platygaster	Orseolia oryzae
	foersteri	
Bethylid parasitoid	Goniozus nephantidis	Coconut black headed caterpillar
	Prorops nasuta	Coffee berry borer

Table 2. List of important insect parasitoids

Parasitoid of coconut BHC

Parasitoid of lepidopteran larvae

Larval parasitoid of

lemon butterfly

Egg parasitoid

Pupal parasitoid of coconut BHC

Parasitoid of papaya mealybug

Parasitoid of rice gallmidge

Biological Control of Sugarcane Woolly Aphid



Severely infested field of sugarcane

Winged forms of woolly aphids

Sooty mould

Biocontrol agents

Dipha aphidivora - Lepidopteran predator

NPV infected larva

Beauveria infected larva

Metarhizium infection

Lecanicillium infected aphid

Entomopathogenic Nematode

Brown lacewing grub

Brown lacewing adult

S. grandis feeding on aphid

Adults of *Synonycha grandis* released in sugarcane field

Egg

Grub

Pupa

Adult

Mass Production of Important Insect Predators

Green lacewing/aphid lion

In India, 65 species of chrysopids belonging to 21 genera have been recorded from various crop ecosystems. Some species are distributed widely and are important natural enemies of aphids and other soft bodied insects. Amongst them, *Chrysoperla zastrowi sillemi* is the most common. It has been used in cotton ecosystem for protection from aphids and other soft bodied insects. The mass rearing technique of this predator involves two steps, larval rearing and adult rearing.

Life cycle of Synonycha grandis

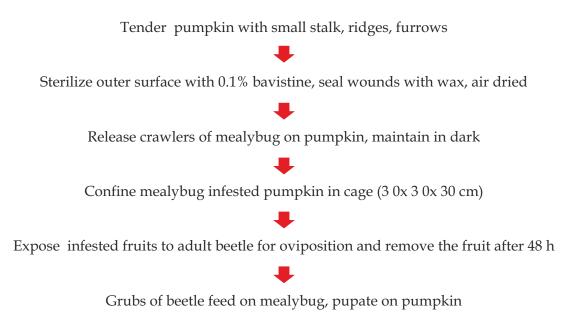
Larval rearing

250 grubs/basin

25 cc of *Corcyra* eggs/500 grubs @ 5cc/day at alternate days

Grubs pupate in10 days

Adult rearing


250 adults/G. I. tray (30 x 12 cm)

Semisynthetic diet (honey, protein hydrolysate, yeast)

Stalked eggs laid on brown sheet wrapper

Australian ladybird beetle/mealybug destroyer

This beetle was introduced in to India during 1989 for the management of mealybug, destroying crops and its mass production involve two steps of rearing of mealybugs on red pumpkin and rearing of grubs.

The optimum field dose for the management of various crop pests is appended in the table 3.

Table 3. Field	dose of key	predators for	pest management
----------------	-------------	---------------	-----------------

Common Name	Scientific Name	Crop	Target pests	Field dose
Green lacewing	Chrysoperla	Cotton,	Aphids, whitefly,	20,000 eggs or first
	zastrowi sillemi	groundnut,	eggs and neonate	instar/acre for 3-5
		sunflower,	larvae of Spodoptera,	times at 10 days
		vegetables,	<i>Helicoverpa,</i> pink	interval
		flowers	bollworm	
Australian lady	Cryptolaemus	Grapevine,	Pink mealybug,	10-15 beetles/tree
bird beetle	montrouzieri	citrus,	citrus mealybug	or vine
		guava		
Lepidopteran	Dipha	Sugarcane	Woolly aphid	1000 cocoons/ac
predator	aphidivora			
Brown lacewing	Micromus	Sugarcane	Woolly aphid	1000 cocoons/ac
	igorotus			
Black beetle	Chilocorus	Coconut	Scale insect	15 to 20 grubs or
	nigrita			adults/infested shoot

Mass Production of Important Insect Parasitoids

Mass production of egg parasitoid, *Trichogramma* spp.

- 1. Mass rearing of Corcyra cephalonica
- 2. Mass production of parasitoid

Corcyra medium ingredients

- 1) 2.5 kg bajra grains
- 2) 100 g of groundnut powder
- 3) 5 g of powdered yeast
- 4) 0.05% streptomycin sulphate (5 mL/tray)
- 5) 5 g of wettable sulphur
- 6) 0.5 cc of Corcyra eggs

Corcyra medium

Secure with Khada cloth

Stacking of trays

Corcyra larvae

Corcyra adult in cage

Release of *Corcyra* adult in cage Collection of *Corcyra* adult

Corcyra adult

Corcyra egg

Egg card

Introduction of parasitoid

Tricho card

Quality parameters for Trichogramma

90 % parasitization 1 cc : 18,000 to 20,000 parasitoids

Mass culturing of egg-larval parasitoid, Chelonus blackburni

Sprinkle Corcyra eggs on white card with gum

Allow the parasitoids @ 1:100 in a plastic container

Transfer the cards to another plastic container with 250 g of broken bajra grains

Parasitoid develops inside the larvae and spin white cocoon

Chelonus blackburni

Mass culturing of larval parasitoid, Bracon brevicornis

Adult emerge in 15-20 days

Cover broader end of chimney with muslin cloth using rubber band

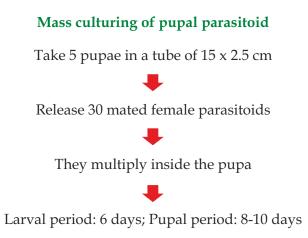
Take one larva of *Corcyra* and cover with another muslin cloth

Release two mated female *Bracon* adults through narrow end of chimney and closed with another muslin cloth

-

Each female lays 8-12 eggs on the ventral side

Transfer parasitized caterpillar in to container having folded papers


Egg period 28-30 h; larval period 3-4 days; pupal period 2-3 days; Total life cycle 7-9 days

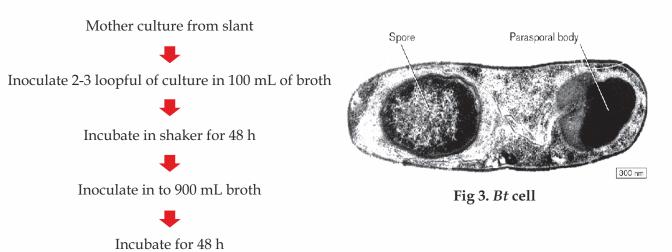
Sandwich Method

Bracon brevicornis

Trichospilus pupivora

Tetrastichus israeli

The field dose of candidate parasitoids for pest management is tabulated in table 4.

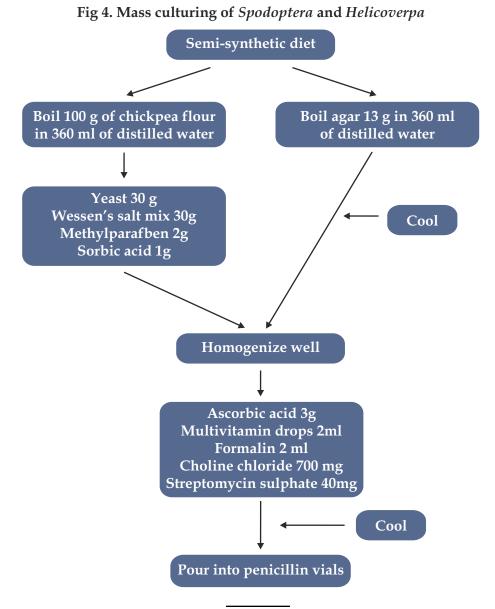

Common Name	Scientific Name	Crop	Target pests	Field dose
Egg parasitoid	Trichogramma japonicum	Rice	Yellow stem- borer	2 releases of <i>T. japonicum</i> @ 2.5 cc/ac/release at weekly interval on 30 and 37 DAT
Egg parasitoid	Trichogramma chilonis	Rice	Leaf folder	3 releases of <i>T. chilonis</i> @ 2.5 cc/ac/release at weekly interval on 37, 44 and 51 DAT
Egg parasitoid	Trichogramma chilonis	Cotton	Bollworms	3-4 releases of <i>T. chilonis</i> @2.5 cc/ac/release at weekly interval starting from 50 % flowering period
Braconid wasp	Bracon hebetor	Cotton	Bollworms	8000 adults/ac
Braconid wasp	Bracon brevicornis	Coconut	Black headed caterpillar	10 adults/tree
Egg larval parasitoid	Chelonus blackburnii	Cotton	Bollworms	8000 parasitoids/ac
Larval parasitoid	Goniozus nephantidis	Coconut	Black headed caterpillar	10 adults/tree
Pupal parasitoid	Trichopilus pupivora, Tetrastichus israeli	Coconut	Pupa of black headed caterpillar	20 adults/tree
Encyrtid parasitoid	Acerophagus papayae	Papaya	Mealybug	100 parasitoids/garden

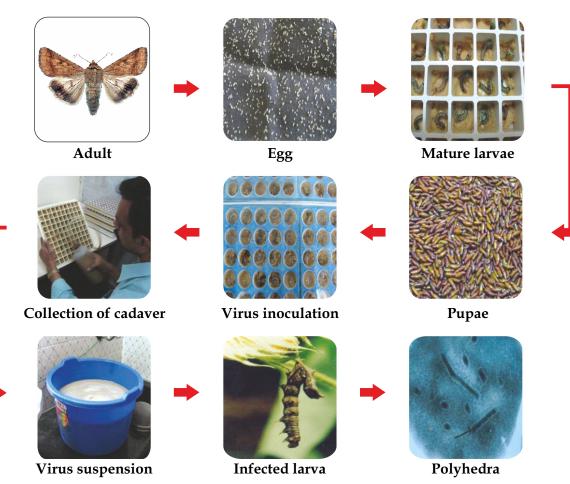
Mass Production of Insect Pathogens

Bacillus thuringiensis

B. thuringiensis is a gram positive spore forming bacteria, isolated from soil. Each bacterial cell forms a spore at one end and a crystal at the other end (Fig. 3). At the time of sporulation, they produce few insecticidal toxins *viz.*, α -exotoxin (heat labile), β -exotoxin (heat stable) and δ -endotoxin (crystalline toxin or crystal). Upon ingestion by the insects, this crystalline inclusion is solubilized in the midgut, releasing proteins called δ -endotoxins. These proteins are activated by midgut proteases and the activated toxins diffuses through the peritrophic membrane of midgut causing a disruption in membrane integrity and ultimately leading to insect death. Many *Bt* based formulations are available in the market (Table 5).

Mass culturing of Bt




Table 5. Bt based formulations commercially available in India

Bt strain	Trade Name	Target pests
Bt var. aizawai	Florback, Centari	Diamondback moth
<i>Bt</i> var. galleriae	Certan	Wax moth larvae
<i>Bt</i> var. israelensis	Bactimos, Bactis, Turimos, Vectobac	Larvae of mosquitoes and black flies
<i>Bt</i> var. kurstaki	Bt, Biobit, Dipel, Delfin, Javelin	Lepidopteran larvae
Bt var. sandiego	Diterra, M-one plus	Beetles and weevils
<i>Bt</i> var. thringiensis	Muscabac, Thuricid	Flies, lepidopterous larvae

Nucleopolyhedron Virus

The viruses belonging the class Baculoviridae are being used for pest management. Among them, nucleopolyhedron virus is a candidate virus. NPV is species specific virus and separate strains are needed to be used for *Spodoptera litura* and *Helicoverpa armigera*. Soon after entry into the insect gut, due to the action of the alkaline gut juice followed by the action of proteolytic enzymes, the polyhedral coat is loosened and dissolved resulting in the liberation of the virions. The liberated virions pass through the mid gut cells enter the haemocoel and start infesting the nuclei or cytoplasm of cells of different tissues like fat body, tracheal matrix, haemocytes, sarcolemma of muscles, neurilemma, nerve cells of ganglion and brain, hypodermis and gonads. The mass culturing of host insects and production of virus are given in figures 4, 5 and 6. The formulations of NPVs are readily available in biocontrol laboratories (Table 6; Fig. 7).

Fig 5. Mass production of Helicoverpa NPV

Fig 6. Mass production of *Spodoptera* NPV

17

Company	Product Name	Formulation	Dosage
Biotech International Ltd., New Delhi	Biovirus H	Liquid formulation	0.6 to 1 mL/L
Som Phytopharma (India) Ltd.,	SOMSTAR-Ha	Liquid formulation	1 mL/L
Hyderabad			
Pest Control (India) Pvt. Ltd., Mumbai	Heli-cide	Liquid formulation	100 mL/acre
Pest Control (India) Pvt. Ltd., Mumbai	Spodo-cide	Liquid formulation	100 mL/acre
Biotech International Ltd., New Delhi	BIOVIRUS-H	Liquid formulation	250 to 500 mL/ha
Biotech International Ltd., Noida	BIOVIRUS-S	Liquid formulation	1 mL/L
Ajay Biotech, Pune	Spodopterin,	Liquid formulation	1 mL/L
	Heliokill		

Fig 7. NPV formulations

Recommendation

Spodoptera NPV: 1 x 10° POBs/mL; 200 litres of water; 1 kg of jaggery; 0.1% teepol (to be sprayed during evening hours)

Helicoverpa NPV: 1 x 10[°] POBs/mL; 200 litres of water; 1 kg cotton seed powder; 0.1% teepol (to be sprayed during evening hours)

Field application

- 1. Spray NPV 2-3 times, as soon as the young instars of pest are seen in field or approximately during flowering period
- Spray virus using high volume sprayer (200 litres of H₂O) during non rainy evening hours
- 3. Add 1 kg of crude sugar or molasses/ac as phagostimulant
- 4. Add 200 mL of teepol or soap solution as sticking agent
- 5. Add 250 g of cotton seed powder for *Helicoverpa*
- NPV also compatible with chlorpyriphos can be applied when two many pests are seen in same field or overlapping of generation of the target pests

Entomopathogenic fungi

Among the insect pathogens, fungi constituted the largest group with more than 750 species causing mycoses in insects. The classes Phycomycetes and Deuteromycetes (fungi imperfecti) include most of the fungal pathogens and among them, the genera *Entomophthora*, *Metarhizium*, *Beauveria*, *Nomuraea* and *Verticillium* are noteworthy. Fungus diseases are commonly seen in insect orders such as Homoptera, Lepidoptera, Coleoptera, Hymenoptera and Diptera. Fungus based biopesticides are popularly called as Mycoinsecticides. The formulations of various such beneficial fungi are available in the Indian market (Table 7, 8).

Mass production

The fungus can be mass produced in conventional laboratory media as well as on crushed maize grains, *etc*. The cheapest media known till date are coconut water wasted from copra making industry or carrot broth (Fig. 8,9).

Fig 8. Coconut water method

Coconut water 40 mL + 375 mL water

Incubate at 15 psi for 20 min

Inoculate 1 mL of stock suspension

Harvest spores after 25-30 days of incubation

Fig 9. Carrot broth method

40 g carrot pieces + 15 mL water

Autoclave at 15 psi for 20 min

Inoculate a loopful of fungus

Harvest spores after 15 days of incubation

Fungus	Brand Name	Target Pests	Crop	Manufacturer
Beauveria bassiana	Myco-Jaal	Diamond back moth	Cabbage	PCI India Ltd.
	Biosoft	<i>Helicoverpa</i> sucking pests	Several crops	Agriland Biotech
	Biowonder	Rice pests	Rice	Indore Biotech
Metarhizium anisopliae	Bio Magic	BPH	Rice	T. Stanes, India
	Multiplex	Root grubs	Several crops	Multiplex
Lecanicillium lecanii	Mycotal	Whitefly, thrips	Several crops	Inora, India
	Inovert	Aphids, scales, mealybugs	Several crops	Inora, India
	Biocatch	Whitefly	Cotton	T. Stanes, India
	Verticare	Mealybugs, scales	Citrus	Viswamitra Bio Agro
Isaria fumosorosea	Prioroty	Mites	Several crops	T. Stanes, India

Table 7. Formulations of Mycoinsecticides in India

Table 8. Field dose of entomopathogenic fungi for pest management

Fungus	Crop and Pest	Recommended dose
Beauveria bassiana	Rice hispa	10 million spores/mL
	Coffee berry borer	1 x 10 ⁷ spores/mL containing 0.1% sunflower oil and 0.1% wetting agent
	Tea looper caterpillar	2.5 g/L
	Sunflower Helicoverpa armigera	Oil suspension @ 200 mg/L
	Green gram white grubs	Soil application @ 5×10^{13} conidia/ha
B. brongniarti	Sugarcane white grub	Soil application @ 1 kg/acre
Metarhizium anisopliae	Coconut rhinoceros beetle	Spraying in breeding sites @ 5×10^{11} spores/m ³
	Sugarcane white grub	1×10^{13} /ha
	Potato white grubs	Soil application @ 5×10^{13} conidia/ha
	Soyabean white grub	Soil application @ 5×10^{13} conidia/ha
Lecanicillium lecanii	Coffee green scale	16 x 10 [°] spores/mL along with Tween 80 twice at 2 weeks interval
	Citrus green scale	2×10^6 spores/mL along with 0.005%
	Mustard aphids	quinalphos and 0.05% Teepol
Nouungoo uilaui	*	10° spores/mL
Nomuraea rileyi	Castor Spodoptera litura	10 x 10 ¹⁰ spores/ml along with 0.02% Tween 80
	Soybean Spodoptera litura,	2×10^8 spores/mL twice at 10 days interval
	Helicoverpa armigera, Thysonoplusia orichalcea	

Entomopathogenic Nematode

Nematodes which kill or affect fecundity of insects are known as entomopathogenic nematodes and have potential of being used as biocontrol agents. The most commonly insect parasitic nematode species belong to the families are Allantonematidae, Mermithidae, Steinernematidae and Heterorhabditidae. The infective juveniles locate the host in the soil and enter through a natural opening, mouth, anus or spiracle. They then penetrate through the midgut wall or tracheae in to the haemocoel. The insect is inoculated with symbiotic bacteria like *Xenorhbadus*. The bacteria rapidly multiply and kill the host within 48 h by septicemia. The immature nematodes ingest bacterial cells and host tissues and then develop to adults. Male and female are separate and mate to produce progeny. When the condition are suitable, IJ's exit the cadaver to seek a new host. The life cycle takes 10-14 days to complete.

Antagonistic Fungi

The recommendations of antagonistic fungi in the management of plant diseases is tabulated (Table 9).

Crop / Disease	Pathogen	Reported BCAs
Rice Blast	Pyricularia oryzae	Pseudomonas fluorescens, Trichoderma spp.
Rice sheath blight	Rhizoctonia solani	P. fluorescens, P. putida, T. harzianum, T. viride, T. virens, Aspergillus niger AN27
Rice bacterial leaf blight	Xanthomonas oryzae pv. oryzae	<i>Bacillus</i> spp.
Wheat root rot	Sclerotium rolfsii, Fusarium oxysporum	T. harzianum
Maize charcoal rot,	Macrophomina phaseolina,	Trichoderma spp.
banded leaf & sheath	R. solani	
blight		
Pigeonpea wilt	Fusarium udum	T. viride, T. hamatum, T. harzianum,
		T. koningii, Bacillus subtilis
Chickpea wilt	F. oxysporum f. sp. ciceri	T. viride, T. harzianum, T. virens,
		B. subtilis, A. niger AN27
Chickpea root rot	R. solani, M. phaseolina	T. viride, T. harzianum
Chickpea collar rot	Sclerotium rolfsii	T. viride, T. harzianum, P. fluorescens
Soybean dry root rot	M. phaseolina	T. viride, T. harzianum
Mungbean root rot	M. phaseolina	T. harzianum, T. viride
Groundnut crown rot	Aspergillus niger	T. viride, T. harzianum, B. subtilis
Groundnut stem & pod rot	S. rolfsii	T. harzianum

Table 9. List of antagonistic fungi for the management of plant diseases of crops

Crop / Disease	Pathogen	Reported BCAs
Groundnut late leaf spot	Phaeoisariopsis personata	Penicillum islandicum, P. fluorescens
		T. harzianum, B. subtilis
Groundnut root and stem	R. solani	T. virens, T. longibrachiatum
rot		
Groundnut rust	Puccinia arachidis	Verticillium lecanii, T. harzianum
Mustard damping-off	Pythium aphanidermatum	T. harzianum, T. viride
Sesamum wilt	F. oxysporum f.sp. sesami	A. niger AN27
Root rot	M. phasolina	Trichoderma sp., Gliocladium sp.,
		B. subtilis
Sunflower blight	Alternaria helianthii	T. virens
Root/collar rot	S. rolfsii, R. solani,	T. harzianum, T. hamatum
	Scerotinia sclerotiorum	
Bottlegourd wilt/ root rot	F. oxysporum, R. solani	A. niger AN27
Cauliflower damping off	P. aphanidermatum	A. niger AN27
Chilli root rot	S. rolfsii	T. harzianum
Chilli fruit root and die	Colletotrichum capsici	T. viride, T. harzianum, T. konningii,
back		T. hamatum, T. longibrachiatum,
		T. pileatus
Cucumber seedling	Phytophthora or Pythium sp.,	T. harzianum,
diseases	F. oxysporum f.sp.	A. niger AN27
	cucumerinum	
Brinjal wilt, damping off	F. solani, P. aphanidermatum	T. viride, T. konningii
Collar rot	S. sclerotiorum	T. viride, T. virens
French bean root rot	R. solani	T. viride, T. hamatum
Pea seed & collar rot,	Pythium sp., R. solani	T. harzianum, T. hamatum T. viride
white rot	S. sclerotiorum	
Potato black-scurf	R. solani	T. viride, T. viride, B. subtilis
Tomato damping-off and	F. oxysporum f. sp.	T. harzianum, P. fluorescens
wilt	lycopersici	

Biocontrol Laboratories

Various bio-control agents, being in recommendation for pest management can be procured from the bio-control laboratories listed in the table 10 and 11.

Table 10. Bio-control Laboratories in India

Sl. No.	Type of Lab	Number of Labs
1.	CIPMCs	35
2.	SBCL (Grant in aid)	38
3.	ICAR	49
4.	SBCL	98
5.	Private	141
	Total	361

Sl. No.	States	Location	
1.	Andhra Pradesh	Nidadavola West Godavari	
2.	Andaman & Nicobar Islands	Haddo, A&N Admn., Port Blair	
3.	Arunachal Pradesh	Naharlagun, Papumpore, Itanagar	
4.	Assam	1. Dalgaon, Distt. Darrang	
		2. R.K. Mission Road, Ulubari, Guwahati-7.	
5.	Bihar	Mithapur, Patna	
6.	Chhattisgarh	Raipur	
7.	Goa	Farmers' Training Centre, Ela Farm, Old Goa	
8.	Gujarat	1. Gandhinagar	
		2. Navasari Agril. University, Navasari-396450	
9.	Haryana	1. Sirsa	
		2. Chandigarh	
10.	Himachal Pradesh	1. Holta, Palanpur, Distt. Kangra	
		2. Distt. Mandi, H.P.	
11.	Jammu & Kashmir	Lal Mandi Campus, Srinagar	
12.	Jharkhand	Ranchi	
13.	Karnataka	Kotnur "D", Gulbarga-585102	
14.	Kerala	1. Mannuthy, Thrissur-680655	
		2. Thiruvananthapuram	
15.	Lakshadweep	Andrott Islands	
16.	Maharashtra	1. Aurangabad Distt.	
		2. Nandurbar Distt.	
17.	Madhya Pradesh	Barkheri Kalan, Bhadbhada, Bhopal	
18.	Meghalaya	P.O. Nonglyer, Upper Shillong-793009, East Khasi Hill	
19.	Mizoram	Neihbawih, Siphir	
20.	Manipur	Mantripukhri, Imphal	
21.	Nagaland	Metziphema, Kohima	
22.	Orissa	Baramunda, Post Delta Colony, Bhubaneshwar-751003	
23.	Pondicherry	KVK Kurumbapett-9	
24.	Punjab	Mansa	
25.	Rajasthan	Durgapura, Tonk Road, Jaipur	
26.	Sikkim	Tadong, Gangtok	
27.	Tamil Nadu	Vinayapuram, Melur Taluk, Madurai	
28.	Tripura	Dutta Tilla, Badharghat, P.O. Arundhuti Nagar,	
		Tripura West-799003	

Table 11. State Bio-control Laboratories (SBCLs) in States/UTs

Sl. No.	States	Location
29.	Uttar Pradesh	Moradabad
30.	Uttarakhand	1. Haldwani
		2. Dhakrani, Dehradun
31.	West Bengal	230A, Neta ji Subhash Chandra Road, Kolkata-700040
	Total number of SBCLs	38

Eco-friendly Traps in Pest Management

Sex Pheromone Trap

It is an intra-specific semiochemicals called 'Sex Pheromone' which is being produced by virgin female adult to attract male adult of the same species for mating. Traps mounted with respective lures are to be installed one at each corner and at centre of the field and also 10 to 15 feet away from the bund of the field. Traps are to be installed 10 to 15 days after transplanting in case of paddy and sowing/dibbling of seeds for other crops. The male adults caught in the traps should be collected daily and killed. Lure is to be changed once in a fortnight for 5 to 6 times based on the number of broods of the pests and duration of the crops. The lures available for various insects are given in the table 12.

Cost: Rs. 15/lure; Rs. 25 to 30/trap

Recommendation: 5 traps/ac for monitoring; 12 traps/ac for mass-trapping

Сгор	Insect pests	Name of lure	
Rice	Yellow stem-borer	Scirpo lure	
Vegetable & flower crops,	Tobacco cut worm	Spodo lure	
oilseeds, pulses, chickpea,	Gram pod borer	Heli lure	
soybean, cotton, sunflower			
Brinjal	Shoot and fruit borer	Sex pheromone lure	
Okra	Shoot and fruit borer	Sex pheromone lure	
Sweet potato	Weevil	Aggregation pheromone lure	
Tomato	Leaf miner and fruit borer	Sex pheromone lure	

Table 12. List of pheromones available in India for pest management

Light Trap

Light trap technology is developed based on the behaviour of attraction of insects to light sources. Light source of trap attracts both sexes of flying insects. The light traps are effective only during night hours and the insects caught should be collected and killed daily early morning of next day or they can be killed by keeping cotton swab with any insecticides. It is useful to monitor the activities of insect pests and to time the plant protection measures. Battery operated LED light sources can be used in rainfed/dryland condition where power source is not practically possible. Various light sources provide visual cue to the insects and attract towards light by stimulating the compound and simple eyes of the insects.

Time of operation: Between 7 pm to 11 pm; to be installed at the inception of crops

Recommendation: One light trap with 220 W mercury lamp/5 acres. Number of traps may vary according to the light sources.

Cost: Mercury light trap: Rs. 7000 to 10000/unit; Battery operated light trap: Rs. 500 to 1000/unit

Yellow Sticky Trap

Pest attracted: Whiteflies, aphids, leaf miners

Crops: Cotton, mustard, vegetable and flowers

No. of traps: 6-8 numbers/ac

Sex pheromone lures and other traps can be procured from M/s Pest Control of India Limited, Bengaluru and Pune.

Panchagavya

Panchagavya, an organic product has the potential to play the role of promoting growth and providing immunity in plant system. Panchagavya consists of nine products viz. cow dung, cow urine, milk, curd, jaggery, ghee, banana, Tender coconut and water. When suitably mixed and used, these have miraculous effects.

- Cow dung 7 kg
- Cow ghee 1 kg

Mix the above two ingredients thoroughly both in morning and evening hours and keep it for 3 days

- Cow Urine 10 liters
- Water 10 liters

After 3 days mix cow urine and water and keep it for 15 days with regular mixing both in morning and evening hours. After 15 days mix the following and panchagavya will be ready after 30 days.

- Cow milk 3 liters
- Cow curd 2 liters
- Tender coconut water 3 liters
- Jaggery 3 kg
- Well ripened poovan banana 12 nos.

Preparation

All the above items can be added to a wide mouthed mud pot, concrete tank or plastic can as per the above order. The container should be kept open under shade. The content is to be stirred twice a day both in morning and evening. The Panchagavya stock solution will be ready after 30 days. (Care should be taken not to mix buffalo products. The products of local breeds of cow is said to have potency than exotic breeds). It should be kept in the shade and covered with a wire mesh or plastic mosquito net to prevent houseflies from laying eggs and the formation of maggots in the solution. If sugarcane juice is not available add 500 g of jaggery dissolved in 3 liter of water.

Physico chemical and biological properties of Panchagavya

Physico-chemical properties of Panchagavya revealed that they possess almost all the major nutrients, micro nutrients and growth harmones (IAA & GA) required for crop growth. Predominance of fermentative microorganisms like yeast and lactobacillus might be due to the combined effect of low pH, milk products and addition of jaggery/sugarcane juice as substrate for their growth.

Table 13. Chemical composition

pН	5.45
EC dSm2	10.22
Total N (ppm)	229
Total P (ppm)	209
Total K (ppm)	232
Sodium	90
Calcium	25
IAA (ppm)	8.5
GA (ppm)	3.5

Table 14. Microbial Load

Fungi	38800/mL
Bacteria	1880000/mL
Lactobacillus	2260000/mL
Total anaerobes	10000/mL
Acid formers	360/mL
Methanogen	250/mL

Recommended Dosage

Spray system : 3% solution was found to be most effective compared to the higher and lower concentrations investigated. Three litres of Panchagavya to every 100 litres of water is ideal for all crops. The power sprayers of 10 litres capacity may need 300 ml/tank.

Flow system : The solution of Panchagavya can be mixed with irrigation water at 50 litres per hectare either through drip irrigation or flow irrigation

Seed/seedling treatment : 3% solution of Panchagavya can be used to soak the seeds or dip the seedlings before planting. Soaking for 20 minutes is sufficient. Rhizomes of Turmeric, Ginger and sets of Sugarcane can be soaked for 30 minutes before planting.

Seed storage : 3% of Panchagavya solution can be used to dip the seeds before drying and storing them.

Crops	Time Schedule	Crops	Time Schedule
Rice	10,15,30 and 50th DAT	Moringa	Before flowering & pod formation
Sunflower	30,45 and 60 DAS	Tomato	Nursery and 40 DAT:
Black gram	Rainfed: 1st flowering and 15 DAF		seed treatment with 1 % for 12 hrs
	Irrigated: 15, 25 and 40 DAS	Onion	0, 45 and 60 DAT
Green gram	15, 25, 30, 40 and 50 DAS	Rose	At the time of pruning and budding
Castor	30 and 45 DAS	Jasmine	Bud initiation and setting
Groundnut	25 and 30th DAS	Vanilla	Dipping setts before planting
Bhendi	30, 45, 60 and 75 DAS		

 Table 15. Time of application of Panchagavya for different crops is given as follows

DAT : Days after transplanting, DAF : Days after flowering, DAS : Days after sowing

Gadgets in storage pests management

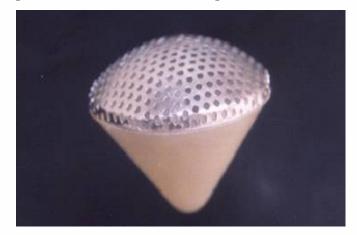
A total of 14 species are well adopted for living in stored grains and responsible for most of the damage. The post-harvest losses are estimated to be around 9.3%, of which losses during storage alone are estimated at 6.6% and insect alone causes

around 2.5% loss. The timely detection of insects in the stored produces is essential to plan timely control measures. Many devices have been developed for stored grain insect management, some of which are popularly used across the country in households/farms/go-downs. All these devices can be used for both monitoring and mass trapping of stored grain insects.

Insect Probe Trap

It consists of a main tube, insect trapping tube and a detachable cone at the bottom. Equispaced perforations of 2 mm diameter are made in the main tube. The insect trap has to be kept in the grain like rice, wheat *etc*, vertically with the white plastic cone downside. The top red cap must be with the level of the grain. Once the insect enters the hole it falls

down into the detachable white cone at the bottom. The white detachable cone can be unscrewed once in a week and the insects can be destroyed. It is effective against rice weevil, redflour beetle and lesser grain borer. The 2-3 traps/25 kg bin (28 cm dia and 39 cm length) can remove > 80% of the insects within 10-20 days.


Two-in-one Model Trap

Combination of probe and pitfall increase the trapping efficiency of insects. It is effective on pulse beetles and captured alive in this trap.

Pit Fall Trap

Pitfall traps are used for capturing insects active on grain surface and in other layers of grain. It has perforated lid and cone shaped bottom which

tapers into a funnel shaped trapping tube. It is simple and economical (cost per trap is Rs. 25/-only) and easy to handle.

Indicator Device

It consists of a cone shaped perforated cup (3mm perforation) with a lid at the top. The cup is fixed at the bottom with a container and circular dish, which are to be smeared with sticky material like vaseline.

Farmers, before storing their pulses, should take 200 g of pulses to be stored and put them in the cup. When the field carried over beetles start emerging, due to their wandering behaviour, they enter the perforations and get

slipped off and fall into the trapping portions. The device with 2 mm perforations can be used for cereals. This will help in eliminating the initial population, which acts as the major source for further build up.

Automatic Insect Removal Bin

The structure has four major parts namely outer container, inner perforated container, collection vessel and the lid. The grains are held in the specially designed inner perforated container. Insects, while wandering, enter the perforation to

reach the aerated part and get slipped off and fall into the collection vessel through a pitfall mechanism provided in the collection vessel. The container will be useful for storing rice, wheat, broken pulses, coriander *etc* It is effective against rice weevil, lesser grain borer, red flour beetle and saw toothed beetle. More than 90% insects can be removed in 10 days. The containers are available in 2 kg, 5 kg, 25 kg, 100 kg and 500 kg capacities.

UV-light trap for grain storage godowns

The UV light trap (4 W germicidal lamp) emitting 250 nm is fitted at the centre of a funnel of 310 mm diameter at the top and 35 mm diameter at the bottom. The bottom end of the funnel is attached with a transparent plastic container for collecting the trapped insects. Three hooks and a tripod stand have been provided at the periphery of the funnel to hang the unit. The UV light trap can be placed in storage godowns at 1.5 m above ground level, preferably in corners. The trap can be operated during the night hours. The light trap attracts stored

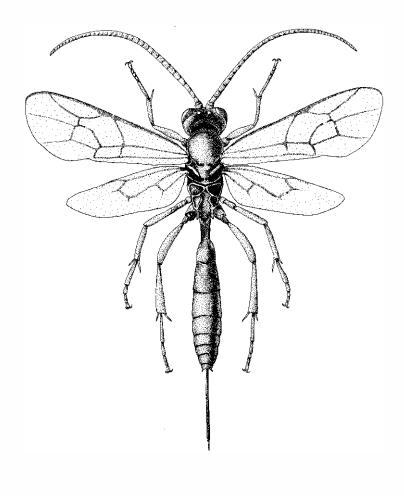
product insects of paddy like lesser grain borer, redflour beetle and saw-toothed beetle in large numbers. Normally 2 numbers of UV light trap per 60 x 20 m (L x B) godown with 5 m height is suggested.

Device to remove Insect Eggs from Stored Pulse Seeds

The gadget can successfully crush the eggs of pulse beetle The gadget has outer container and an inner perforated container with a rotating rod having fixed with plastic brushes on all sides. The seeds with eggs are to be stored in the perforated container and the rod has to be rotated one full circumference clockwise and anti-clockwise for 10 minutes, 3 times a day (morning, noon and afternoon). Due to the splashing action of the brush in rotating rod, the eggs get crushed and thus the damage is prevented. The treatment does not affect

the germination of seeds.

Trap for monitoring stored product insects in warehouse


It is a device for detecting stored grain insects in bag-stacks which comprises a main hollow tube having a diameter in the range of 1.8 to 2.0 cm with equi-spaced perforation in the range of 1.8 to 2 mm on its upper portion with a bend at one end which ends in a transparent collection unit to collect the insects falling down from the bend, the other end of main tube being closed.

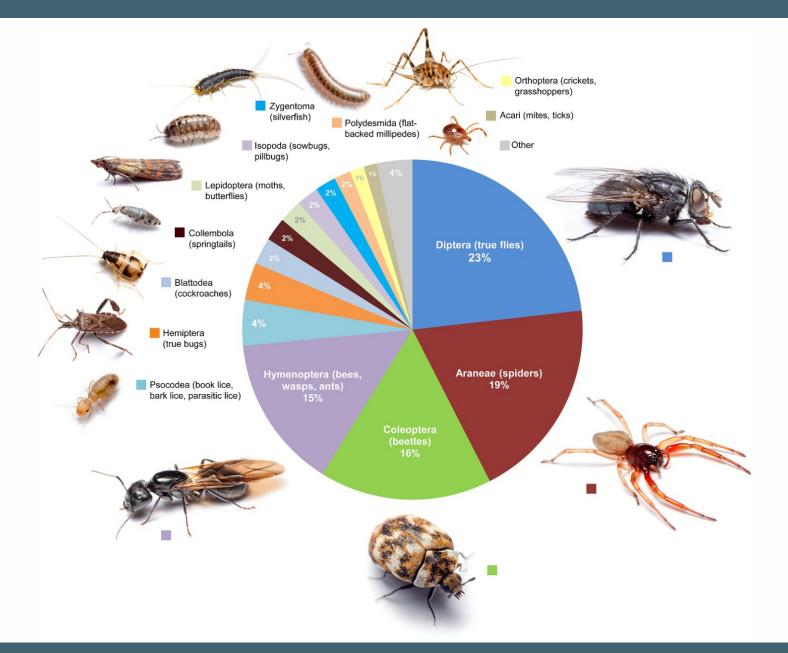
Gadgets for storage pest management can be obtained from M/s Melwin Engineering, No. 18/2, Gandhiji Street, Bharathiar Nagar, Podanur, Coimbatore 641 023.

Conclusion

Eco-friendly pest management technologies are the best alternative to chemical control in respect of giving special focus on safe-guarding environment, natural resources and non-target organisms. Biocontrol agents are typically derived from living organisms, microorganisms, and other natural sources they pose less risk to people and the environment and hence gain worldwide attention as a new tool to kill insects and plant disease. Development and promotion of bio-pesticides usage in India need to be well addressed through promoting their manufacture at village level as an ancillary profession to agriculture. Registration process of bio-pesticides in India may be simplified without compromising quality and authenticity of the product. Various traps being used now-a-days in India are of having paramount importance to manage pests of crops, however their timely availability to stakeholders has to be taken care by extension officers and policy makers. The gadget technology to manage storage pests is a novel method and getting popular in India, however its awareness among the extension officers and farmers is in infancy which need to be addressed suitably.

Agr#search with a Buman touch

For further contact : The Director ICAR-National Institute of Biotic Stress Management Baronda, Raipur, Chhattisgarh - 493 225 Telefax : 0771-2225333, Email : director.nibsm.cg@gov.in Website : www.nibsm.res.in Courtesy : TNAU, Coimbatore, Tamil Nadu ICAR-NBAIR, Bengaluru, Karnataka


Disclaimer :

The images and relevant information used in the bulletin have been collected and compiled from various web sources. Hence, the author(s) of ICAR-NIBSM are not claiming any copyright. Further, all the rights are reserved with the original authors. This publication is meant for local circulation only and not for commercial purpose.

"Farmers and Scientists are two sentinels of New India and they have to work together to transform agriculture"

> Shri Narendra Modi Hon'ble Prime Minister of India